Fallenleaves
Watch out for those dogs, those evildoers, those m
-
- Joined
- Aug 14, 2022
- Posts
- 12,548
4-(Lim x--->0 (| 2x - 1| - | 2x + 1|)/x)
4-(Lim x--->0 (| 2x - 1| - | 2x + 1|)/x)
Correct
You can totally use IBPF. After all, 1+x^5 has a zero at x = -1.It's impossible, IBP, trig sub, u-sub and IBPF can't be used
Its just old practice. And I don't answer everything, only problems I can casually solve in my head. A few other users are pretty goodMy nigga @Caesercel you answer basically everything.
Number theory?math PhD student
I mean, if you want to undo an implicit differentiation, all those may not workIt's impossible, IBP, trig sub, u-sub and IBPF can't be used
How Tf do you remember this shit? Brutal you could have saved from the test years ago where I was humiliatedold practice
Nope. In the direction of probability, statistics and approximation theory.Number theory?
Let p(x) = f(x - 4). Then |p(±1)| = |p(±2)| = |p(±3)| = 12. Supposing p is odd, we want to find a & c such that p(x) = ax^3 + cx and |p(1)| = |p(2)| = |p(3)| = 12. We can turn this into a linear system of equations -- namelyBe f(x) a cubic polynomial with real coefficients, such that:
∣ f(1) ∣ = ∣ f(2) ∣ = ∣ f(3) ∣ = ∣ f(5) ∣ = ∣ f(6)∣ = ∣ f(7) ∣ = 12.
Find ∣ f(0) ∣
Very funnyYou can totally use IBPF. After all, 1+x^5 has a zero at x = -1.
InfinityUndefined
No, because there is a discontinuity in infinityInfinity
Linear algebraWhat area of math should I self-study after calculus? @Ahnfeltia @trying to ascend
CorrectLet p(x) = f(x - 4). Then |p(±1)| = |p(±2)| = |p(±3)| = 12. Supposing p is odd, we want to find a & c such that p(x) = ax^3 + cx and |p(1)| = |p(2)| = |p(3)| = 12. We can turn this into a linear system of equations -- namely
Because the above linear system is overdetermined, we should be able to express one of the three left-hand sides as a linear combination of the other two. Indeed, 4(8a + 2c) - 5(a + c) = 27a + 3c, so we immediately see that p(1) & p(2) must have the same sign. Which sign p(1) & p(2) share doesn't matter, because swapping the sign would amount to negating p and we're only interested in the absolute value of f(0) = p(-4). WLOG we'll therefore solve
- a + c = p(1) = ±12
- 8a + 2c = p(2) = ±12
- 27a + 3c = p(3) = ±12
Skipping the boring details, a = 2 & c = -14, so p(x) = 2x^3 - 14x and |p(-4)| = |2*64 - 56| = 72.
- a + c = -12
- 8a + 2c = -12
Anyone else care to prove that the p I've found is the only solution (up to sign) to the system |p(±1)| = |p(±2)| = |p(±3)| = 12?
that was not a jokeVery funny
Wolfram Mathematica disagrees. Curiously the solution features the golden ratio prominently. I imagine the way to solve for the antiderivative of 1/(1+x^5) is to notice that 1+x^5 = (1+x)(1-x+x^2-x^3+x^4) and to further notice that 1-x+x^2-x^3+x^4 = (1+ax+x^2)(1+bx+x^2) for some a & b by the fundamental theorem of algebra and judicious guessing. Solving for a & b readily yields that -- without loss of generality -- a is minus the golden ratio and b is the reciprocal of the golden ratio. At this point, you can probably go thru some onerous partial fraction decomposition to arrive at the answer.
Improper integrals are limits. Convergent improper integrals are limits that converge to an actual number. Divergent improper integrals -- on the other hand -- are limits that either go off to (minus) infinity or end up oscillating.What exactly does convergent and divergent mean when calculating improper integrals, I get the definition but is there some meaning behind the 2 ways of describing improper integrals?
ThanksImproper integrals are limits. Convergent improper integrals are limits that converge to an actual number. Divergent improper integrals -- on the other hand -- are limits that either go off to (minus) infinity or end up oscillating.
What area of math should I self-study after calculus? @Ahnfeltia @trying to ascend
Linear algebra
I have but I don't like his videos@Fallenleaves Have you ever come across this guy? He seems legit, but I can't understand Chinese.
https://www.pornhub.com/model/changhsumath666/videos
Fair enough. The concept is hella based tho.I have but I don't like his videos
Fair enough. The concept is hella based tho.
I've come across them both. The stuff they tackle is a bit too basic for me.
I prefer these 2 guys, for now at least
I've come across them both. The stuff they tackle is a bit too basic for me.
Have you ever come across <https://www.youtube.com/@MichaelPennMath>? His stuff sounds like it might be right up your alley.
Yeah I've seen this video from his channel:Have you ever come across <https://www.youtube.com/@MichaelPennMath>? His stuff sounds like it might be right up your alley.
Yeah I've seen this video from his channel:
I've recently unsubscribed as most of his content is too advanced for me at this point of time.
i mean, i get it. i thought history was a gay useless subject in high school. i dunno just leave the math nerds to our mathYou people are sick.
I have to do a lot of math for school now and it makes me wanna kill myself.
I HATE MATH AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
What is the subject?You people are sick.
I have to do a lot of math for school now and it makes me wanna kill myself.
I HATE MATH AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
I respect math and high iq mathincels and I know its important for many things but please dont force me to do iti mean, i get it. i thought history was a gay useless subject in high school. i dunno just leave the math nerds to our math
Algebra, Vectors, Matrix, population-calculation rnWhat is the subject?
yeah it sucks, but i mean you'll get through it then you won't have to think about math anymoreI respect math and high iq mathincels and I know its important for many things but please dont force me to do it
I feel very bad rn and I think it is atleast partially bc of school math.
I thought this way multiple times and each time it came back to rape my asshole telling me "I aint done with you yet"yeah it sucks, but i mean you'll get through it then you won't have to think about math anymore
You will do well bhai.I respect math and high iq mathincels and I know its important for many things but please dont force me to do it
I feel very bad rn and I think it is atleast partially bc of school math.
Algebra, Vectors, Matrix, population-calculation rn
but after that and a couple other topics I will have to write a big exam on all math things I "learned" fuck my life.
Linear algebra, differential equations, real/complex analysis, topology.What area of math should I self-study after calculus? @Ahnfeltia @trying to ascend
Thanks for the reassuring words bro.You will do well bhai.
Are you in college or HS?
Why you hate math?I hate math so much that the existence of this thread pisses me off
same here tbh nglI hate math so much that the existence of this thread pisses me off
a) Dhere
i wasted 3 minutes overleafing this. if you want solutions just ask for em, but give em a good try first. they aren't easy
View attachment 689619
@CountBlecka) D
b) Converges to 3/4
c) By p value test, it converges to -1/3
a) it actually converges to 0.@CountBleck
Ogrea) it actually converges to 0.
b) it actually converges to 1/4
c) it converges to pi/4. not -1/3.
Why can't we approximate the integral of part c to be 1/x^4a) it actually converges to 0.
b) it actually converges to 1/4
c) it converges to pi/4. not -1/3.
why are you using an approximation?Why can't we approximate the integral of part c to be 1/x^4
Infinity is in the domain of xwhy are you using an approximation?
i don't understand. what does this mean?Infinity is in the domain of x