We'll find the values of a^n + b^n + c^n + d^n for n = 1 thru 5 in order. But first, some notation. Let e1 = a + b + c + d, e2 = ab + ac + ad + bc + bd + cd, e3 = abc + abd + acd + bcd, and e4 = abcd. By
Vieta's formulae, e1 = 3, e2 = 2, e3 = 1, and e4 = 4. Now, a + b + c + d = e1 = 3. Next,
- a^2 + b^2 + c^2 + d^2 = e1^2 - 2e2 = 3^2 - 2*2 = 5
- a^3 + b^3 + c^3 + d^3 = e1^3 - 3e1e2 + 3e3 = 3^3 - 3*3*2 + 3*1 = 27 - 18 + 3 = 12
- a^4 + b^4 + c^4 + d^4 = e1^4 - 4e1^2e2 + 2e2^2 + 4e1e3 - 4e4 = 3^4 - 4*3^2*2 + 2*2^2 + 4*3*1 - 4*4 = 81 - 72 + 8 + 12 - 16 = 13
As for a^5 + b^5 + c^5 + d^5, we know that a^5 = a*a^4 = a(3a^3 - 2a^2 + a - 4) = 3a^4 - 2a^3 + a^2 - 4a as a is zero of p. Similarly for b, c, and d. Ergo, a^5 + b^5 + c^5 + d^5 = 3(a^4 + b^4 + c^4 + d^4) - 2(a^3 + b^3 + c^3 + d^3) + (a^2 + b^2 + c^2 + d^2) - 4(a + b + c + d) = 3*13 - 2*12 + 5 - 3 = 39 - 24 + 2 = 17.
In hindsight using
Newton's identities would've been faster...