mNFwTJ3wz9
This system is contradicting of failing, and yet -
★★★★★
- Joined
- Nov 17, 2019
- Posts
- 9,505
dimensions of rect are GO = x and GR = y
lines tangent to a circle from a point are equal length
Circle 1 eqns :
x-3 + OW - 3 = GW
Circle 3 eqns :
x - 5 + y - 5 = GE (GE = (x^2 + y^2)^0.5)
Heron formula on triangle enclosing circle 2: (area of this 2 should be are of GOE - GOW)
(s *( s- a) *(s - b) *( s - c )) ^ 0.5
[some equation in terms of GW,WE,GE]
(WE = y - OW)
Triangle 1 eqn
x ^ 2 + OW ^2 = GW ^2
That gives 4 eqn, 4 variables, => solvable
Circle 1 eqns :
x-3 + OW - 3 = GW
Circle 3 eqns :
x - 5 + y - 5 = GE (GE = (x^2 + y^2)^0.5)
Heron formula on triangle enclosing circle 2: (area of this 2 should be are of GOE - GOW)
(s *( s- a) *(s - b) *( s - c )) ^ 0.5
[some equation in terms of GW,WE,GE]
(WE = y - OW)
Triangle 1 eqn
x ^ 2 + OW ^2 = GW ^2
That gives 4 eqn, 4 variables, => solvable
OW = a
GW = b
x - 3 + a - 3 = b
(x-5 + y-5)^2 = x^2 + y^2
(s * (s-b) * (s-y+a) * (s - (x^2 + y^2)^0.5) ) = x^2 * (y - a)^2 * (1/4)
x^2 + a^2 = b^2
GW = b
x - 3 + a - 3 = b
(x-5 + y-5)^2 = x^2 + y^2
s = (b + y-a + (x^2 + y^2)^0.5) / 2
(s * (s-b) * (s-y+a) * (s - (x^2 + y^2)^0.5) ) = (x*y/2 - x*a/2)^2
(s * (s-b) * (s-y+a) * (s - (x^2 + y^2)^0.5) ) = (x*y/2 - x*a/2)^2
(s * (s-b) * (s-y+a) * (s - (x^2 + y^2)^0.5) ) = x^2 * (y - a)^2 * (1/4)
x^2 + a^2 = b^2
Last edited: